home *** CD-ROM | disk | FTP | other *** search
MacBinary | 1993-07-29 | 10.4 KB | [TEXT/MPS ] |
open in:
MacOS 8.1
|
Win98
|
DOS
browse contents |
view JSON data
|
view as text
This file was processed as: MacBinary
(archive/macBinary).
Confidence | Program | Detection | Match Type | Support
|
---|
66%
| dexvert
| Compact Compressed (Unix) (archive/compact)
| ext
| Supported |
10%
| dexvert
| MacBinary (archive/macBinary)
| fallback
| Supported |
1%
| dexvert
| Text File (text/txt)
| fallback
| Supported |
100%
| file
| MacBinary II, inited, Thu Jul 29 18:08:56 1993, modified Thu Jul 29 18:08:56 1993, creator 'MPS ', type ASCII, 9944 bytes "QUADRICS.C" , at 0x2758 428 bytes resource
| default (weak)
| |
99%
| file
| data
| default
| |
74%
| TrID
| Macintosh plain text (MacBinary)
| default
| |
25%
| TrID
| MacBinary 2
| default (weak)
| |
100%
| lsar
| MacBinary
| default
|
|
id metadata |
---|
key | value |
---|
macFileType | [TEXT] |
macFileCreator | [MPS ] |
hex view+--------+-------------------------+-------------------------+--------+--------+
|00000000| 00 0a 51 55 41 44 52 49 | 43 53 2e 43 00 00 00 00 |..QUADRI|CS.C....|
|00000010| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000020| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000030| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000040| 00 54 45 58 54 4d 50 53 | 20 01 00 00 00 00 00 00 |.TEXTMPS| .......|
|00000050| 00 00 00 00 00 26 d8 00 | 00 01 ac a8 7d fa f8 a8 |.....&..|....}...|
|00000060| 7d fa f8 00 00 08 00 00 | 00 00 00 00 00 00 00 00 |}.......|........|
|00000070| 00 00 00 00 00 00 00 00 | 00 00 81 81 41 eb 00 00 |........|....A...|
|00000080| 2f 2a 2a 2a 2a 2a 2a 2a | 2a 2a 2a 2a 2a 2a 2a 2a |/*******|********|
|00000090| 2a 2a 2a 2a 2a 2a 2a 2a | 2a 2a 2a 2a 2a 2a 2a 2a |********|********|
|000000a0| 2a 2a 2a 2a 2a 2a 2a 2a | 2a 2a 2a 2a 2a 2a 2a 2a |********|********|
|000000b0| 2a 2a 2a 2a 2a 2a 2a 2a | 2a 2a 2a 2a 2a 2a 2a 2a |********|********|
|000000c0| 2a 2a 2a 2a 2a 2a 2a 2a | 2a 2a 2a 2a 2a 0d 2a 20 |********|*****.* |
|000000d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 71 | | q|
|000000e0| 75 61 64 72 69 63 73 2e | 63 0d 2a 0d 2a 20 20 54 |uadrics.|c.*.* T|
|000000f0| 68 69 73 20 6d 6f 64 75 | 6c 65 20 69 6d 70 6c 65 |his modu|le imple|
|00000100| 6d 65 6e 74 73 20 74 68 | 65 20 63 6f 64 65 20 66 |ments th|e code f|
|00000110| 6f 72 20 74 68 65 20 71 | 75 61 64 72 69 63 20 73 |or the q|uadric s|
|00000120| 68 61 70 65 20 70 72 69 | 6d 69 74 69 76 65 2e 0d |hape pri|mitive..|
|00000130| 2a 0d 2a 20 20 66 72 6f | 6d 20 50 65 72 73 69 73 |*.* fro|m Persis|
|00000140| 74 65 6e 63 65 20 6f 66 | 20 56 69 73 69 6f 6e 20 |tence of| Vision |
|00000150| 52 61 79 74 72 61 63 65 | 72 0d 2a 20 20 43 6f 70 |Raytrace|r.* Cop|
|00000160| 79 72 69 67 68 74 20 31 | 39 39 33 20 50 65 72 73 |yright 1|993 Pers|
|00000170| 69 73 74 65 6e 63 65 20 | 6f 66 20 56 69 73 69 6f |istence |of Visio|
|00000180| 6e 20 54 65 61 6d 0d 2a | 2d 2d 2d 2d 2d 2d 2d 2d |n Team.*|--------|
|00000190| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 2d 2d 2d 2d 2d |--------|--------|
|000001a0| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 2d 2d 2d 2d 2d |--------|--------|
|000001b0| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 2d 2d 2d 2d 2d |--------|--------|
|000001c0| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 2d 2d 2d 2d 2d |--------|--------|
|000001d0| 2d 2d 2d 0d 2a 20 20 4e | 4f 54 49 43 45 3a 20 54 |---.* N|OTICE: T|
|000001e0| 68 69 73 20 73 6f 75 72 | 63 65 20 63 6f 64 65 20 |his sour|ce code |
|000001f0| 66 69 6c 65 20 69 73 20 | 70 72 6f 76 69 64 65 64 |file is |provided|
|00000200| 20 73 6f 20 74 68 61 74 | 20 75 73 65 72 73 20 6d | so that| users m|
|00000210| 61 79 20 65 78 70 65 72 | 69 6d 65 6e 74 0d 2a 20 |ay exper|iment.* |
|00000220| 20 77 69 74 68 20 65 6e | 68 61 6e 63 65 6d 65 6e | with en|hancemen|
|00000230| 74 73 20 74 6f 20 50 4f | 56 2d 52 61 79 20 61 6e |ts to PO|V-Ray an|
|00000240| 64 20 74 6f 20 70 6f 72 | 74 20 74 68 65 20 73 6f |d to por|t the so|
|00000250| 66 74 77 61 72 65 20 74 | 6f 20 70 6c 61 74 66 6f |ftware t|o platfo|
|00000260| 72 6d 73 20 6f 74 68 65 | 72 20 0d 2a 20 20 74 68 |rms othe|r .* th|
|00000270| 61 6e 20 74 68 6f 73 65 | 20 73 75 70 70 6f 72 74 |an those| support|
|00000280| 65 64 20 62 79 20 74 68 | 65 20 50 4f 56 2d 52 61 |ed by th|e POV-Ra|
|00000290| 79 20 54 65 61 6d 2e 20 | 20 54 68 65 72 65 20 61 |y Team. | There a|
|000002a0| 72 65 20 73 74 72 69 63 | 74 20 72 75 6c 65 73 20 |re stric|t rules |
|000002b0| 75 6e 64 65 72 0d 2a 20 | 20 77 68 69 63 68 20 79 |under.* | which y|
|000002c0| 6f 75 20 61 72 65 20 70 | 65 72 6d 69 74 74 65 64 |ou are p|ermitted|
|000002d0| 20 74 6f 20 75 73 65 20 | 74 68 69 73 20 66 69 6c | to use |this fil|
|000002e0| 65 2e 20 20 54 68 65 20 | 72 75 6c 65 73 20 61 72 |e. The |rules ar|
|000002f0| 65 20 69 6e 20 74 68 65 | 20 66 69 6c 65 0d 2a 20 |e in the| file.* |
|00000300| 20 6e 61 6d 65 64 20 50 | 4f 56 4c 45 47 41 4c 2e | named P|OVLEGAL.|
|00000310| 44 4f 43 20 77 68 69 63 | 68 20 73 68 6f 75 6c 64 |DOC whic|h should|
|00000320| 20 62 65 20 64 69 73 74 | 72 69 62 75 74 65 64 20 | be dist|ributed |
|00000330| 77 69 74 68 20 74 68 69 | 73 20 66 69 6c 65 2e 20 |with thi|s file. |
|00000340| 49 66 20 0d 2a 20 20 50 | 4f 56 4c 45 47 41 4c 2e |If .* P|OVLEGAL.|
|00000350| 44 4f 43 20 69 73 20 6e | 6f 74 20 61 76 61 69 6c |DOC is n|ot avail|
|00000360| 61 62 6c 65 20 6f 72 20 | 66 6f 72 20 6d 6f 72 65 |able or |for more|
|00000370| 20 69 6e 66 6f 20 70 6c | 65 61 73 65 20 63 6f 6e | info pl|ease con|
|00000380| 74 61 63 74 20 74 68 65 | 20 50 4f 56 2d 52 61 79 |tact the| POV-Ray|
|00000390| 0d 2a 20 20 54 65 61 6d | 20 43 6f 6f 72 64 69 6e |.* Team| Coordin|
|000003a0| 61 74 6f 72 20 62 79 20 | 6c 65 61 76 69 6e 67 20 |ator by |leaving |
|000003b0| 61 20 6d 65 73 73 61 67 | 65 20 69 6e 20 43 6f 6d |a messag|e in Com|
|000003c0| 70 75 53 65 72 76 65 27 | 73 20 47 72 61 70 68 69 |puServe'|s Graphi|
|000003d0| 63 73 20 44 65 76 65 6c | 6f 70 65 72 27 73 0d 2a |cs Devel|oper's.*|
|000003e0| 20 20 46 6f 72 75 6d 2e | 20 20 54 68 65 20 6c 61 | Forum.| The la|
|000003f0| 74 65 73 74 20 76 65 72 | 73 69 6f 6e 20 6f 66 20 |test ver|sion of |
|00000400| 50 4f 56 2d 52 61 79 20 | 6d 61 79 20 62 65 20 66 |POV-Ray |may be f|
|00000410| 6f 75 6e 64 20 74 68 65 | 72 65 20 61 73 20 77 65 |ound the|re as we|
|00000420| 6c 6c 2e 0d 2a 0d 2a 20 | 54 68 69 73 20 70 72 6f |ll..*.* |This pro|
|00000430| 67 72 61 6d 20 69 73 20 | 62 61 73 65 64 20 6f 6e |gram is |based on|
|00000440| 20 74 68 65 20 70 6f 70 | 75 6c 61 72 20 44 4b 42 | the pop|ular DKB|
|00000450| 20 72 61 79 74 72 61 63 | 65 72 20 76 65 72 73 69 | raytrac|er versi|
|00000460| 6f 6e 20 32 2e 31 32 2e | 0d 2a 20 44 4b 42 54 72 |on 2.12.|.* DKBTr|
|00000470| 61 63 65 20 77 61 73 20 | 6f 72 69 67 69 6e 61 6c |ace was |original|
|00000480| 6c 79 20 77 72 69 74 74 | 65 6e 20 62 79 20 44 61 |ly writt|en by Da|
|00000490| 76 69 64 20 4b 2e 20 42 | 75 63 6b 2e 0d 2a 20 44 |vid K. B|uck..* D|
|000004a0| 4b 42 54 72 61 63 65 20 | 56 65 72 20 32 2e 30 2d |KBTrace |Ver 2.0-|
|000004b0| 32 2e 31 32 20 77 65 72 | 65 20 77 72 69 74 74 65 |2.12 wer|e writte|
|000004c0| 6e 20 62 79 20 44 61 76 | 69 64 20 4b 2e 20 42 75 |n by Dav|id K. Bu|
|000004d0| 63 6b 20 26 20 41 61 72 | 6f 6e 20 41 2e 20 43 6f |ck & Aar|on A. Co|
|000004e0| 6c 6c 69 6e 73 2e 0d 2a | 0d 2a 2a 2a 2a 2a 2a 2a |llins..*|.*******|
|000004f0| 2a 2a 2a 2a 2a 2a 2a 2a | 2a 2a 2a 2a 2a 2a 2a 2a |********|********|
|00000500| 2a 2a 2a 2a 2a 2a 2a 2a | 2a 2a 2a 2a 2a 2a 2a 2a |********|********|
|00000510| 2a 2a 2a 2a 2a 2a 2a 2a | 2a 2a 2a 2a 2a 2a 2a 2a |********|********|
|00000520| 2a 2a 2a 2a 2a 2a 2a 2a | 2a 2a 2a 2a 2a 2a 2a 2a |********|********|
|00000530| 2a 2a 2a 2a 2a 2a 2f 0d | 0d 23 69 6e 63 6c 75 64 |******/.|.#includ|
|00000540| 65 20 22 66 72 61 6d 65 | 2e 68 22 0d 23 69 6e 63 |e "frame|.h".#inc|
|00000550| 6c 75 64 65 20 22 76 65 | 63 74 6f 72 2e 68 22 0d |lude "ve|ctor.h".|
|00000560| 23 69 6e 63 6c 75 64 65 | 20 22 70 6f 76 70 72 6f |#include| "povpro|
|00000570| 74 6f 2e 68 22 0d 0d 4d | 45 54 48 4f 44 53 20 51 |to.h"..M|ETHODS Q|
|00000580| 75 61 64 72 69 63 5f 4d | 65 74 68 6f 64 73 20 3d |uadric_M|ethods =|
|00000590| 0d 20 20 7b 20 0d 20 20 | 41 6c 6c 5f 51 75 61 64 |. { . |All_Quad|
|000005a0| 72 69 63 5f 49 6e 74 65 | 72 73 65 63 74 69 6f 6e |ric_Inte|rsection|
|000005b0| 73 2c 0d 20 20 49 6e 73 | 69 64 65 5f 51 75 61 64 |s,. Ins|ide_Quad|
|000005c0| 72 69 63 2c 20 51 75 61 | 64 72 69 63 5f 4e 6f 72 |ric, Qua|dric_Nor|
|000005d0| 6d 61 6c 2c 0d 20 20 43 | 6f 70 79 5f 51 75 61 64 |mal,. C|opy_Quad|
|000005e0| 72 69 63 2c 0d 20 20 54 | 72 61 6e 73 6c 61 74 65 |ric,. T|ranslate|
|000005f0| 5f 51 75 61 64 72 69 63 | 2c 20 52 6f 74 61 74 65 |_Quadric|, Rotate|
|00000600| 5f 51 75 61 64 72 69 63 | 2c 0d 20 20 53 63 61 6c |_Quadric|,. Scal|
|00000610| 65 5f 51 75 61 64 72 69 | 63 2c 20 54 72 61 6e 73 |e_Quadri|c, Trans|
|00000620| 66 6f 72 6d 5f 51 75 61 | 64 72 69 63 2c 20 49 6e |form_Qua|dric, In|
|00000630| 76 65 72 74 5f 51 75 61 | 64 72 69 63 2c 0d 20 20 |vert_Qua|dric,. |
|00000640| 44 65 73 74 72 6f 79 5f | 51 75 61 64 72 69 63 0d |Destroy_|Quadric.|
|00000650| 7d 3b 0d 0d 65 78 74 65 | 72 6e 20 52 41 59 20 2a |};..exte|rn RAY *|
|00000660| 43 4d 5f 52 61 79 3b 0d | 65 78 74 65 72 6e 20 6c |CM_Ray;.|extern l|
|00000670| 6f 6e 67 20 52 61 79 5f | 51 75 61 64 72 69 63 5f |ong Ray_|Quadric_|
|00000680| 54 65 73 74 73 2c 20 52 | 61 79 5f 51 75 61 64 72 |Tests, R|ay_Quadr|
|00000690| 69 63 5f 54 65 73 74 73 | 5f 53 75 63 63 65 65 64 |ic_Tests|_Succeed|
|000006a0| 65 64 3b 0d 0d 69 6e 74 | 20 41 6c 6c 5f 51 75 61 |ed;..int| All_Qua|
|000006b0| 64 72 69 63 5f 49 6e 74 | 65 72 73 65 63 74 69 6f |dric_Int|ersectio|
|000006c0| 6e 73 20 28 4f 62 6a 65 | 63 74 2c 20 52 61 79 2c |ns (Obje|ct, Ray,|
|000006d0| 20 44 65 70 74 68 5f 53 | 74 61 63 6b 29 0d 4f 42 | Depth_S|tack).OB|
|000006e0| 4a 45 43 54 20 2a 4f 62 | 6a 65 63 74 3b 0d 52 41 |JECT *Ob|ject;.RA|
|000006f0| 59 20 2a 52 61 79 3b 0d | 49 53 54 41 43 4b 20 2a |Y *Ray;.|ISTACK *|
|00000700| 44 65 70 74 68 5f 53 74 | 61 63 6b 3b 0d 20 20 7b |Depth_St|ack;. {|
|00000710| 0d 20 20 44 42 4c 20 44 | 65 70 74 68 31 2c 20 44 |. DBL D|epth1, D|
|00000720| 65 70 74 68 32 3b 0d 20 | 20 56 45 43 54 4f 52 20 |epth2;. | VECTOR |
|00000730| 49 50 6f 69 6e 74 3b 0d | 20 20 72 65 67 69 73 74 |IPoint;.| regist|
|00000740| 65 72 20 69 6e 74 20 49 | 6e 74 65 72 73 65 63 74 |er int I|ntersect|
|00000750| 69 6f 6e 5f 46 6f 75 6e | 64 3b 0d 0d 20 20 49 6e |ion_Foun|d;.. In|
|00000760| 74 65 72 73 65 63 74 69 | 6f 6e 5f 46 6f 75 6e 64 |tersecti|on_Found|
|00000770| 20 3d 20 46 41 4c 53 45 | 3b 0d 0d 20 20 69 66 20 | = FALSE|;.. if |
|00000780| 28 49 6e 74 65 72 73 65 | 63 74 5f 51 75 61 64 72 |(Interse|ct_Quadr|
|00000790| 69 63 20 28 52 61 79 2c | 20 28 51 55 41 44 52 49 |ic (Ray,| (QUADRI|
|000007a0| 43 20 2a 29 20 4f 62 6a | 65 63 74 2c 20 26 44 65 |C *) Obj|ect, &De|
|000007b0| 70 74 68 31 2c 20 26 44 | 65 70 74 68 32 29 29 0d |pth1, &D|epth2)).|
|000007c0| 20 20 20 20 7b 0d 20 20 | 20 20 56 53 63 61 6c 65 | {. | VScale|
|000007d0| 20 28 49 50 6f 69 6e 74 | 2c 20 52 61 79 2d 3e 44 | (IPoint|, Ray->D|
|000007e0| 69 72 65 63 74 69 6f 6e | 2c 20 44 65 70 74 68 31 |irection|, Depth1|
|000007f0| 29 3b 0d 20 20 20 20 56 | 41 64 64 45 71 20 28 49 |);. V|AddEq (I|
|00000800| 50 6f 69 6e 74 2c 20 52 | 61 79 2d 3e 49 6e 69 74 |Point, R|ay->Init|
|00000810| 69 61 6c 29 3b 0d 0d 20 | 20 20 20 69 66 20 28 50 |ial);.. | if (P|
|00000820| 6f 69 6e 74 5f 49 6e 5f | 43 6c 69 70 20 28 26 49 |oint_In_|Clip (&I|
|00000830| 50 6f 69 6e 74 2c 20 4f | 62 6a 65 63 74 2d 3e 43 |Point, O|bject->C|
|00000840| 6c 69 70 29 29 0d 20 20 | 20 20 20 20 7b 0d 20 20 |lip)). | {. |
|00000850| 20 20 20 20 70 75 73 68 | 5f 65 6e 74 72 79 28 44 | push|_entry(D|
|00000860| 65 70 74 68 31 2c 49 50 | 6f 69 6e 74 2c 4f 62 6a |epth1,IP|oint,Obj|
|00000870| 65 63 74 2c 44 65 70 74 | 68 5f 53 74 61 63 6b 29 |ect,Dept|h_Stack)|
|00000880| 3b 0d 20 20 20 20 20 20 | 49 6e 74 65 72 73 65 63 |;. |Intersec|
|00000890| 74 69 6f 6e 5f 46 6f 75 | 6e 64 20 3d 20 54 52 55 |tion_Fou|nd = TRU|
|000008a0| 45 3b 0d 20 20 20 20 20 | 20 7d 0d 0d 20 20 20 20 |E;. | }.. |
|000008b0| 69 66 20 28 44 65 70 74 | 68 32 20 21 3d 20 44 65 |if (Dept|h2 != De|
|000008c0| 70 74 68 31 29 0d 20 20 | 20 20 20 20 7b 0d 20 20 |pth1). | {. |
|000008d0| 20 20 20 20 56 53 63 61 | 6c 65 20 28 49 50 6f 69 | VSca|le (IPoi|
|000008e0| 6e 74 2c 20 52 61 79 2d | 3e 44 69 72 65 63 74 69 |nt, Ray-|>Directi|
|000008f0| 6f 6e 2c 20 44 65 70 74 | 68 32 29 3b 0d 20 20 20 |on, Dept|h2);. |
|00000900| 20 20 20 56 41 64 64 45 | 71 20 28 49 50 6f 69 6e | VAddE|q (IPoin|
|00000910| 74 2c 20 52 61 79 2d 3e | 49 6e 69 74 69 61 6c 29 |t, Ray->|Initial)|
|00000920| 3b 0d 0d 20 20 20 20 20 | 20 69 66 20 28 50 6f 69 |;.. | if (Poi|
|00000930| 6e 74 5f 49 6e 5f 43 6c | 69 70 20 28 26 49 50 6f |nt_In_Cl|ip (&IPo|
|00000940| 69 6e 74 2c 20 4f 62 6a | 65 63 74 2d 3e 43 6c 69 |int, Obj|ect->Cli|
|00000950| 70 29 29 0d 20 20 20 20 | 20 20 20 20 7b 0d 20 20 |p)). | {. |
|00000960| 20 20 20 20 20 20 70 75 | 73 68 5f 65 6e 74 72 79 | pu|sh_entry|
|00000970| 28 44 65 70 74 68 32 2c | 49 50 6f 69 6e 74 2c 4f |(Depth2,|IPoint,O|
|00000980| 62 6a 65 63 74 2c 44 65 | 70 74 68 5f 53 74 61 63 |bject,De|pth_Stac|
|00000990| 6b 29 3b 0d 20 20 20 20 | 20 20 20 20 49 6e 74 65 |k);. | Inte|
|000009a0| 72 73 65 63 74 69 6f 6e | 5f 46 6f 75 6e 64 20 3d |rsection|_Found =|
|000009b0| 20 54 52 55 45 3b 0d 20 | 20 20 20 20 20 20 20 7d | TRUE;. | }|
|000009c0| 0d 20 20 20 20 20 20 7d | 0d 20 20 20 20 7d 0d 20 |. }|. }. |
|000009d0| 20 72 65 74 75 72 6e 20 | 28 49 6e 74 65 72 73 65 | return |(Interse|
|000009e0| 63 74 69 6f 6e 5f 46 6f | 75 6e 64 29 3b 0d 20 20 |ction_Fo|und);. |
|000009f0| 7d 0d 0d 69 6e 74 20 49 | 6e 74 65 72 73 65 63 74 |}..int I|ntersect|
|00000a00| 5f 51 75 61 64 72 69 63 | 20 28 52 61 79 2c 20 51 |_Quadric| (Ray, Q|
|00000a10| 75 61 64 72 69 63 2c 20 | 44 65 70 74 68 31 2c 20 |uadric, |Depth1, |
|00000a20| 44 65 70 74 68 32 29 0d | 52 41 59 20 2a 52 61 79 |Depth2).|RAY *Ray|
|00000a30| 3b 0d 51 55 41 44 52 49 | 43 20 2a 51 75 61 64 72 |;.QUADRI|C *Quadr|
|00000a40| 69 63 3b 0d 44 42 4c 20 | 2a 44 65 70 74 68 31 2c |ic;.DBL |*Depth1,|
|00000a50| 20 2a 44 65 70 74 68 32 | 3b 0d 20 20 7b 0d 20 20 | *Depth2|;. {. |
|00000a60| 72 65 67 69 73 74 65 72 | 20 44 42 4c 20 53 71 75 |register| DBL Squ|
|00000a70| 61 72 65 5f 54 65 72 6d | 2c 20 4c 69 6e 65 61 72 |are_Term|, Linear|
|00000a80| 5f 54 65 72 6d 2c 20 43 | 6f 6e 73 74 61 6e 74 5f |_Term, C|onstant_|
|00000a90| 54 65 72 6d 2c 20 54 65 | 6d 70 5f 54 65 72 6d 3b |Term, Te|mp_Term;|
|00000aa0| 0d 20 20 72 65 67 69 73 | 74 65 72 20 44 42 4c 20 |. regis|ter DBL |
|00000ab0| 44 65 74 65 72 6d 69 6e | 61 6e 74 2c 20 44 65 74 |Determin|ant, Det|
|00000ac0| 65 72 6d 69 6e 61 6e 74 | 5f 32 2c 20 41 32 2c 20 |erminant|_2, A2, |
|00000ad0| 42 4d 69 6e 75 73 3b 0d | 0d 20 20 52 61 79 5f 51 |BMinus;.|. Ray_Q|
|00000ae0| 75 61 64 72 69 63 5f 54 | 65 73 74 73 2b 2b 3b 0d |uadric_T|ests++;.|
|00000af0| 20 20 69 66 20 28 21 52 | 61 79 2d 3e 51 75 61 64 | if (!R|ay->Quad|
|00000b00| 72 69 63 5f 43 6f 6e 73 | 74 61 6e 74 73 5f 43 61 |ric_Cons|tants_Ca|
|00000b10| 63 68 65 64 29 0d 20 20 | 20 20 4d 61 6b 65 5f 52 |ched). | Make_R|
|00000b20| 61 79 28 52 61 79 29 3b | 0d 0d 20 20 69 66 20 28 |ay(Ray);|.. if (|
|00000b30| 51 75 61 64 72 69 63 2d | 3e 4e 6f 6e 5f 5a 65 72 |Quadric-|>Non_Zer|
|00000b40| 6f 5f 53 71 75 61 72 65 | 5f 54 65 72 6d 29 0d 20 |o_Square|_Term). |
|00000b50| 20 20 20 7b 0d 20 20 20 | 20 56 44 6f 74 20 28 53 | {. | VDot (S|
|00000b60| 71 75 61 72 65 5f 54 65 | 72 6d 2c 20 51 75 61 64 |quare_Te|rm, Quad|
|00000b70| 72 69 63 2d 3e 53 71 75 | 61 72 65 5f 54 65 72 6d |ric->Squ|are_Term|
|00000b80| 73 2c 20 52 61 79 2d 3e | 44 69 72 65 63 74 69 6f |s, Ray->|Directio|
|00000b90| 6e 5f 32 29 3b 0d 20 20 | 20 20 56 44 6f 74 20 28 |n_2);. | VDot (|
|00000ba0| 54 65 6d 70 5f 54 65 72 | 6d 2c 20 51 75 61 64 72 |Temp_Ter|m, Quadr|
|00000bb0| 69 63 2d 3e 4d 69 78 65 | 64 5f 54 65 72 6d 73 2c |ic->Mixe|d_Terms,|
|00000bc0| 20 52 61 79 2d 3e 4d 69 | 78 65 64 5f 44 69 72 5f | Ray->Mi|xed_Dir_|
|00000bd0| 44 69 72 29 3b 0d 20 20 | 20 20 53 71 75 61 72 65 |Dir);. | Square|
|00000be0| 5f 54 65 72 6d 20 2b 3d | 20 54 65 6d 70 5f 54 65 |_Term +=| Temp_Te|
|00000bf0| 72 6d 3b 0d 20 20 20 20 | 7d 0d 20 20 65 6c 73 65 |rm;. |}. else|
|00000c00| 0d 20 20 20 20 53 71 75 | 61 72 65 5f 54 65 72 6d |. Squ|are_Term|
|00000c10| 20 3d 20 30 2e 30 3b 0d | 0d 20 20 56 44 6f 74 20 | = 0.0;.|. VDot |
|00000c20| 28 4c 69 6e 65 61 72 5f | 54 65 72 6d 2c 20 51 75 |(Linear_|Term, Qu|
|00000c30| 61 64 72 69 63 2d 3e 53 | 71 75 61 72 65 5f 54 65 |adric->S|quare_Te|
|00000c40| 72 6d 73 2c 20 52 61 79 | 2d 3e 49 6e 69 74 69 61 |rms, Ray|->Initia|
|00000c50| 6c 5f 44 69 72 65 63 74 | 69 6f 6e 29 3b 0d 20 20 |l_Direct|ion);. |
|00000c60| 4c 69 6e 65 61 72 5f 54 | 65 72 6d 20 2a 3d 20 32 |Linear_T|erm *= 2|
|00000c70| 2e 30 3b 0d 20 20 56 44 | 6f 74 20 28 54 65 6d 70 |.0;. VD|ot (Temp|
|00000c80| 5f 54 65 72 6d 2c 20 51 | 75 61 64 72 69 63 2d 3e |_Term, Q|uadric->|
|00000c90| 54 65 72 6d 73 2c 20 52 | 61 79 2d 3e 44 69 72 65 |Terms, R|ay->Dire|
|00000ca0| 63 74 69 6f 6e 29 3b 0d | 20 20 4c 69 6e 65 61 72 |ction);.| Linear|
|00000cb0| 5f 54 65 72 6d 20 2b 3d | 20 54 65 6d 70 5f 54 65 |_Term +=| Temp_Te|
|00000cc0| 72 6d 3b 0d 20 20 56 44 | 6f 74 20 28 54 65 6d 70 |rm;. VD|ot (Temp|
|00000cd0| 5f 54 65 72 6d 2c 20 51 | 75 61 64 72 69 63 2d 3e |_Term, Q|uadric->|
|00000ce0| 4d 69 78 65 64 5f 54 65 | 72 6d 73 2c 20 52 61 79 |Mixed_Te|rms, Ray|
|00000cf0| 2d 3e 4d 69 78 65 64 5f | 49 6e 69 74 5f 44 69 72 |->Mixed_|Init_Dir|
|00000d00| 29 3b 0d 20 20 4c 69 6e | 65 61 72 5f 54 65 72 6d |);. Lin|ear_Term|
|00000d10| 20 2b 3d 20 54 65 6d 70 | 5f 54 65 72 6d 3b 0d 0d | += Temp|_Term;..|
|00000d20| 20 20 69 66 20 28 52 61 | 79 20 3d 3d 20 43 4d 5f | if (Ra|y == CM_|
|00000d30| 52 61 79 29 0d 20 20 20 | 20 69 66 20 28 21 51 75 |Ray). | if (!Qu|
|00000d40| 61 64 72 69 63 2d 3e 43 | 6f 6e 73 74 61 6e 74 5f |adric->C|onstant_|
|00000d50| 43 61 63 68 65 64 29 0d | 20 20 20 20 20 20 7b 0d |Cached).| {.|
|00000d60| 20 20 20 20 20 20 56 44 | 6f 74 20 28 43 6f 6e 73 | VD|ot (Cons|
|00000d70| 74 61 6e 74 5f 54 65 72 | 6d 2c 20 51 75 61 64 72 |tant_Ter|m, Quadr|
|00000d80| 69 63 2d 3e 53 71 75 61 | 72 65 5f 54 65 72 6d 73 |ic->Squa|re_Terms|
|00000d90| 2c 20 52 61 79 2d 3e 49 | 6e 69 74 69 61 6c 5f 32 |, Ray->I|nitial_2|
|00000da0| 29 3b 0d 20 20 20 20 20 | 20 56 44 6f 74 20 28 54 |);. | VDot (T|
|00000db0| 65 6d 70 5f 54 65 72 6d | 2c 20 51 75 61 64 72 69 |emp_Term|, Quadri|
|00000dc0| 63 2d 3e 54 65 72 6d 73 | 2c 20 52 61 79 2d 3e 49 |c->Terms|, Ray->I|
|00000dd0| 6e 69 74 69 61 6c 29 3b | 0d 20 20 20 20 20 20 43 |nitial);|. C|
|00000de0| 6f 6e 73 74 61 6e 74 5f | 54 65 72 6d 20 2b 3d 20 |onstant_|Term += |
|00000df0| 20 54 65 6d 70 5f 54 65 | 72 6d 20 2b 20 51 75 61 | Temp_Te|rm + Qua|
|00000e00| 64 72 69 63 2d 3e 43 6f | 6e 73 74 61 6e 74 3b 0d |dric->Co|nstant;.|
|00000e10| 20 20 20 20 20 20 51 75 | 61 64 72 69 63 2d 3e 43 | Qu|adric->C|
|00000e20| 4d 5f 43 6f 6e 73 74 61 | 6e 74 20 3d 20 43 6f 6e |M_Consta|nt = Con|
|00000e30| 73 74 61 6e 74 5f 54 65 | 72 6d 3b 0d 20 20 20 20 |stant_Te|rm;. |
|00000e40| 20 20 51 75 61 64 72 69 | 63 2d 3e 43 6f 6e 73 74 | Quadri|c->Const|
|00000e50| 61 6e 74 5f 43 61 63 68 | 65 64 20 3d 20 54 52 55 |ant_Cach|ed = TRU|
|00000e60| 45 3b 0d 20 20 20 20 20 | 20 7d 0d 20 20 20 20 65 |E;. | }. e|
|00000e70| 6c 73 65 0d 20 20 20 20 | 20 20 43 6f 6e 73 74 61 |lse. | Consta|
|00000e80| 6e 74 5f 54 65 72 6d 20 | 3d 20 51 75 61 64 72 69 |nt_Term |= Quadri|
|00000e90| 63 2d 3e 43 4d 5f 43 6f | 6e 73 74 61 6e 74 3b 0d |c->CM_Co|nstant;.|
|00000ea0| 20 20 65 6c 73 65 0d 20 | 20 20 20 7b 0d 20 20 20 | else. | {. |
|00000eb0| 20 56 44 6f 74 20 28 43 | 6f 6e 73 74 61 6e 74 5f | VDot (C|onstant_|
|00000ec0| 54 65 72 6d 2c 20 51 75 | 61 64 72 69 63 2d 3e 53 |Term, Qu|adric->S|
|00000ed0| 71 75 61 72 65 5f 54 65 | 72 6d 73 2c 20 52 61 79 |quare_Te|rms, Ray|
|00000ee0| 2d 3e 49 6e 69 74 69 61 | 6c 5f 32 29 3b 0d 20 20 |->Initia|l_2);. |
|00000ef0| 20 20 56 44 6f 74 20 28 | 54 65 6d 70 5f 54 65 72 | VDot (|Temp_Ter|
|00000f00| 6d 2c 20 51 75 61 64 72 | 69 63 2d 3e 54 65 72 6d |m, Quadr|ic->Term|
|00000f10| 73 2c 20 52 61 79 2d 3e | 49 6e 69 74 69 61 6c 29 |s, Ray->|Initial)|
|00000f20| 3b 0d 20 20 20 20 43 6f | 6e 73 74 61 6e 74 5f 54 |;. Co|nstant_T|
|00000f30| 65 72 6d 20 2b 3d 20 54 | 65 6d 70 5f 54 65 72 6d |erm += T|emp_Term|
|00000f40| 20 2b 20 51 75 61 64 72 | 69 63 2d 3e 43 6f 6e 73 | + Quadr|ic->Cons|
|00000f50| 74 61 6e 74 3b 0d 20 20 | 20 20 7d 0d 0d 20 20 56 |tant;. | }.. V|
|00000f60| 44 6f 74 20 28 54 65 6d | 70 5f 54 65 72 6d 2c 20 |Dot (Tem|p_Term, |
|00000f70| 51 75 61 64 72 69 63 2d | 3e 4d 69 78 65 64 5f 54 |Quadric-|>Mixed_T|
|00000f80| 65 72 6d 73 2c 20 0d 20 | 20 20 20 52 61 79 2d 3e |erms, . | Ray->|
|00000f90| 4d 69 78 65 64 5f 49 6e | 69 74 69 61 6c 5f 49 6e |Mixed_In|itial_In|
|00000fa0| 69 74 69 61 6c 29 3b 0d | 20 20 43 6f 6e 73 74 61 |itial);.| Consta|
|00000fb0| 6e 74 5f 54 65 72 6d 20 | 2b 3d 20 54 65 6d 70 5f |nt_Term |+= Temp_|
|00000fc0| 54 65 72 6d 3b 0d 0d 20 | 20 69 66 20 28 53 71 75 |Term;.. | if (Squ|
|00000fd0| 61 72 65 5f 54 65 72 6d | 20 21 3d 20 30 2e 30 29 |are_Term| != 0.0)|
|00000fe0| 0d 20 20 20 20 7b 0d 20 | 20 20 20 2f 2a 20 54 68 |. {. | /* Th|
|00000ff0| 65 20 65 71 75 61 74 69 | 6f 6e 20 69 73 20 71 75 |e equati|on is qu|
|00001000| 61 64 72 61 74 69 63 20 | 2d 20 66 69 6e 64 20 69 |adratic |- find i|
|00001010| 74 73 20 72 6f 6f 74 73 | 20 2a 2f 0d 0d 20 20 20 |ts roots| */.. |
|00001020| 20 44 65 74 65 72 6d 69 | 6e 61 6e 74 5f 32 20 3d | Determi|nant_2 =|
|00001030| 20 4c 69 6e 65 61 72 5f | 54 65 72 6d 20 2a 20 4c | Linear_|Term * L|
|00001040| 69 6e 65 61 72 5f 54 65 | 72 6d 20 2d 20 34 2e 30 |inear_Te|rm - 4.0|
|00001050| 20 2a 20 53 71 75 61 72 | 65 5f 54 65 72 6d 20 2a | * Squar|e_Term *|
|00001060| 20 43 6f 6e 73 74 61 6e | 74 5f 54 65 72 6d 3b 0d | Constan|t_Term;.|
|00001070| 0d 20 20 20 20 69 66 20 | 28 44 65 74 65 72 6d 69 |. if |(Determi|
|00001080| 6e 61 6e 74 5f 32 20 3c | 20 30 2e 30 29 0d 20 20 |nant_2 <| 0.0). |
|00001090| 20 20 20 20 72 65 74 75 | 72 6e 20 28 46 41 4c 53 | retu|rn (FALS|
|000010a0| 45 29 3b 0d 0d 20 20 20 | 20 44 65 74 65 72 6d 69 |E);.. | Determi|
|000010b0| 6e 61 6e 74 20 3d 20 73 | 71 72 74 20 28 44 65 74 |nant = s|qrt (Det|
|000010c0| 65 72 6d 69 6e 61 6e 74 | 5f 32 29 3b 0d 20 20 20 |erminant|_2);. |
|000010d0| 20 41 32 20 3d 20 53 71 | 75 61 72 65 5f 54 65 72 | A2 = Sq|uare_Ter|
|000010e0| 6d 20 2a 20 32 2e 30 3b | 0d 20 20 20 20 42 4d 69 |m * 2.0;|. BMi|
|000010f0| 6e 75 73 20 3d 20 4c 69 | 6e 65 61 72 5f 54 65 72 |nus = Li|near_Ter|
|00001100| 6d 20 2a 20 2d 31 2e 30 | 3b 0d 0d 20 20 20 20 2a |m * -1.0|;.. *|
|00001110| 44 65 70 74 68 31 20 3d | 20 28 42 4d 69 6e 75 73 |Depth1 =| (BMinus|
|00001120| 20 2b 20 44 65 74 65 72 | 6d 69 6e 61 6e 74 29 20 | + Deter|minant) |
|00001130| 2f 20 41 32 3b 0d 20 20 | 20 20 2a 44 65 70 74 68 |/ A2;. | *Depth|
|00001140| 32 20 3d 20 28 42 4d 69 | 6e 75 73 20 2d 20 44 65 |2 = (BMi|nus - De|
|00001150| 74 65 72 6d 69 6e 61 6e | 74 29 20 2f 20 41 32 3b |terminan|t) / A2;|
|00001160| 0d 20 20 20 20 7d 0d 20 | 20 65 6c 73 65 0d 20 20 |. }. | else. |
|00001170| 20 20 7b 0d 20 20 20 20 | 2f 2a 20 54 68 65 72 65 | {. |/* There|
|00001180| 20 61 72 65 20 6e 6f 20 | 71 75 61 64 72 61 74 69 | are no |quadrati|
|00001190| 63 20 74 65 72 6d 73 2e | 20 20 53 6f 6c 76 65 20 |c terms.| Solve |
|000011a0| 74 68 65 20 6c 69 6e 65 | 61 72 20 65 71 75 61 74 |the line|ar equat|
|000011b0| 69 6f 6e 20 69 6e 73 74 | 65 61 64 2e 20 2a 2f 0d |ion inst|ead. */.|
|000011c0| 20 20 20 20 69 66 20 28 | 4c 69 6e 65 61 72 5f 54 | if (|Linear_T|
|000011d0| 65 72 6d 20 3d 3d 20 30 | 2e 30 29 0d 20 20 20 20 |erm == 0|.0). |
|000011e0| 20 20 72 65 74 75 72 6e | 20 28 46 41 4c 53 45 29 | return| (FALSE)|
|000011f0| 3b 0d 0d 20 20 20 20 2a | 44 65 70 74 68 31 20 3d |;.. *|Depth1 =|
|00001200| 20 43 6f 6e 73 74 61 6e | 74 5f 54 65 72 6d 20 2a | Constan|t_Term *|
|00001210| 20 2d 31 2e 30 20 2f 20 | 4c 69 6e 65 61 72 5f 54 | -1.0 / |Linear_T|
|00001220| 65 72 6d 3b 0d 20 20 20 | 20 2a 44 65 70 74 68 32 |erm;. | *Depth2|
|00001230| 20 3d 20 2a 44 65 70 74 | 68 31 3b 0d 20 20 20 20 | = *Dept|h1;. |
|00001240| 7d 0d 0d 20 20 69 66 20 | 28 28 2a 44 65 70 74 68 |}.. if |((*Depth|
|00001250| 31 20 3c 20 53 6d 61 6c | 6c 5f 54 6f 6c 65 72 61 |1 < Smal|l_Tolera|
|00001260| 6e 63 65 29 20 7c 7c 20 | 28 2a 44 65 70 74 68 31 |nce) || |(*Depth1|
|00001270| 20 3e 20 4d 61 78 5f 44 | 69 73 74 61 6e 63 65 29 | > Max_D|istance)|
|00001280| 29 0d 20 20 20 20 69 66 | 20 28 28 2a 44 65 70 74 |). if| ((*Dept|
|00001290| 68 32 20 3c 20 53 6d 61 | 6c 6c 5f 54 6f 6c 65 72 |h2 < Sma|ll_Toler|
|000012a0| 61 6e 63 65 29 20 7c 7c | 20 28 2a 44 65 70 74 68 |ance) ||| (*Depth|
|000012b0| 32 20 3e 20 4d 61 78 5f | 44 69 73 74 61 6e 63 65 |2 > Max_|Distance|
|000012c0| 29 29 0d 20 20 20 20 20 | 20 72 65 74 75 72 6e 20 |)). | return |
|000012d0| 28 46 41 4c 53 45 29 3b | 0d 20 20 20 20 65 6c 73 |(FALSE);|. els|
|000012e0| 65 0d 20 20 20 20 20 20 | 2a 44 65 70 74 68 31 20 |e. |*Depth1 |
|000012f0| 3d 20 2a 44 65 70 74 68 | 32 3b 0d 20 20 65 6c 73 |= *Depth|2;. els|
|00001300| 65 0d 20 20 20 20 69 66 | 20 28 28 2a 44 65 70 74 |e. if| ((*Dept|
|00001310| 68 32 20 3c 20 53 6d 61 | 6c 6c 5f 54 6f 6c 65 72 |h2 < Sma|ll_Toler|
|00001320| 61 6e 63 65 29 20 7c 7c | 20 28 2a 44 65 70 74 68 |ance) ||| (*Depth|
|00001330| 32 20 3e 20 4d 61 78 5f | 44 69 73 74 61 6e 63 65 |2 > Max_|Distance|
|00001340| 29 29 0d 20 20 20 20 20 | 20 2a 44 65 70 74 68 32 |)). | *Depth2|
|00001350| 20 3d 20 2a 44 65 70 74 | 68 31 3b 0d 0d 20 20 52 | = *Dept|h1;.. R|
|00001360| 61 79 5f 51 75 61 64 72 | 69 63 5f 54 65 73 74 73 |ay_Quadr|ic_Tests|
|00001370| 5f 53 75 63 63 65 65 64 | 65 64 2b 2b 3b 0d 20 20 |_Succeed|ed++;. |
|00001380| 72 65 74 75 72 6e 20 28 | 54 52 55 45 29 3b 0d 20 |return (|TRUE);. |
|00001390| 20 7d 0d 0d 69 6e 74 20 | 49 6e 73 69 64 65 5f 51 | }..int |Inside_Q|
|000013a0| 75 61 64 72 69 63 20 28 | 49 50 6f 69 6e 74 2c 20 |uadric (|IPoint, |
|000013b0| 4f 62 6a 65 63 74 29 0d | 56 45 43 54 4f 52 20 2a |Object).|VECTOR *|
|000013c0| 49 50 6f 69 6e 74 3b 0d | 4f 42 4a 45 43 54 20 2a |IPoint;.|OBJECT *|
|000013d0| 4f 62 6a 65 63 74 3b 0d | 20 20 7b 0d 20 20 51 55 |Object;.| {. QU|
|000013e0| 41 44 52 49 43 20 2a 51 | 75 61 64 72 69 63 20 3d |ADRIC *Q|uadric =|
|000013f0| 20 28 51 55 41 44 52 49 | 43 20 2a 29 20 4f 62 6a | (QUADRI|C *) Obj|
|00001400| 65 63 74 3b 0d 20 20 56 | 45 43 54 4f 52 20 4e 65 |ect;. V|ECTOR Ne|
|00001410| 77 5f 50 6f 69 6e 74 3b | 0d 20 20 72 65 67 69 73 |w_Point;|. regis|
|00001420| 74 65 72 20 44 42 4c 20 | 52 65 73 75 6c 74 2c 20 |ter DBL |Result, |
|00001430| 4c 69 6e 65 61 72 5f 54 | 65 72 6d 2c 20 53 71 75 |Linear_T|erm, Squ|
|00001440| 61 72 65 5f 54 65 72 6d | 3b 0d 0d 20 20 56 44 6f |are_Term|;.. VDo|
|00001450| 74 20 28 4c 69 6e 65 61 | 72 5f 54 65 72 6d 2c 20 |t (Linea|r_Term, |
|00001460| 2a 49 50 6f 69 6e 74 2c | 20 51 75 61 64 72 69 63 |*IPoint,| Quadric|
|00001470| 2d 3e 54 65 72 6d 73 29 | 3b 0d 20 20 52 65 73 75 |->Terms)|;. Resu|
|00001480| 6c 74 20 3d 20 4c 69 6e | 65 61 72 5f 54 65 72 6d |lt = Lin|ear_Term|
|00001490| 20 2b 20 51 75 61 64 72 | 69 63 2d 3e 43 6f 6e 73 | + Quadr|ic->Cons|
|000014a0| 74 61 6e 74 3b 0d 20 20 | 56 53 71 75 61 72 65 54 |tant;. |VSquareT|
|000014b0| 65 72 6d 73 20 28 4e 65 | 77 5f 50 6f 69 6e 74 2c |erms (Ne|w_Point,|
|000014c0| 20 2a 49 50 6f 69 6e 74 | 29 3b 0d 20 20 56 44 6f | *IPoint|);. VDo|
|000014d0| 74 20 28 53 71 75 61 72 | 65 5f 54 65 72 6d 2c 20 |t (Squar|e_Term, |
|000014e0| 4e 65 77 5f 50 6f 69 6e | 74 2c 20 51 75 61 64 72 |New_Poin|t, Quadr|
|000014f0| 69 63 2d 3e 53 71 75 61 | 72 65 5f 54 65 72 6d 73 |ic->Squa|re_Terms|
|00001500| 29 3b 0d 20 20 52 65 73 | 75 6c 74 20 2b 3d 20 53 |);. Res|ult += S|
|00001510| 71 75 61 72 65 5f 54 65 | 72 6d 3b 0d 20 20 52 65 |quare_Te|rm;. Re|
|00001520| 73 75 6c 74 20 2b 3d 20 | 51 75 61 64 72 69 63 2d |sult += |Quadric-|
|00001530| 3e 4d 69 78 65 64 5f 54 | 65 72 6d 73 2e 78 20 2a |>Mixed_T|erms.x *|
|00001540| 20 28 49 50 6f 69 6e 74 | 2d 3e 78 29 20 2a 20 28 | (IPoint|->x) * (|
|00001550| 49 50 6f 69 6e 74 2d 3e | 79 29 0d 20 20 20 20 2b |IPoint->|y). +|
|00001560| 20 51 75 61 64 72 69 63 | 2d 3e 4d 69 78 65 64 5f | Quadric|->Mixed_|
|00001570| 54 65 72 6d 73 2e 79 20 | 2a 20 28 49 50 6f 69 6e |Terms.y |* (IPoin|
|00001580| 74 2d 3e 78 29 20 2a 20 | 28 49 50 6f 69 6e 74 2d |t->x) * |(IPoint-|
|00001590| 3e 7a 29 0d 20 20 20 20 | 20 20 2b 20 51 75 61 64 |>z). | + Quad|
|000015a0| 72 69 63 2d 3e 4d 69 78 | 65 64 5f 54 65 72 6d 73 |ric->Mix|ed_Terms|
|000015b0| 2e 7a 20 2a 20 28 49 50 | 6f 69 6e 74 2d 3e 79 29 |.z * (IP|oint->y)|
|000015c0| 20 2a 20 28 49 50 6f 69 | 6e 74 2d 3e 7a 29 3b 0d | * (IPoi|nt->z);.|
|000015d0| 0d 20 20 69 66 20 28 52 | 65 73 75 6c 74 20 3c 20 |. if (R|esult < |
|000015e0| 53 6d 61 6c 6c 5f 54 6f | 6c 65 72 61 6e 63 65 29 |Small_To|lerance)|
|000015f0| 0d 20 20 20 20 72 65 74 | 75 72 6e 20 28 54 52 55 |. ret|urn (TRU|
|00001600| 45 29 3b 0d 0d 20 20 72 | 65 74 75 72 6e 20 28 46 |E);.. r|eturn (F|
|00001610| 41 4c 53 45 29 3b 0d 20 | 20 7d 0d 0d 76 6f 69 64 |ALSE);. | }..void|
|00001620| 20 51 75 61 64 72 69 63 | 5f 4e 6f 72 6d 61 6c 20 | Quadric|_Normal |
|00001630| 28 52 65 73 75 6c 74 2c | 20 4f 62 6a 65 63 74 2c |(Result,| Object,|
|00001640| 20 49 50 6f 69 6e 74 29 | 0d 56 45 43 54 4f 52 20 | IPoint)|.VECTOR |
|00001650| 2a 52 65 73 75 6c 74 2c | 20 2a 49 50 6f 69 6e 74 |*Result,| *IPoint|
|00001660| 3b 0d 4f 42 4a 45 43 54 | 20 2a 4f 62 6a 65 63 74 |;.OBJECT| *Object|
|00001670| 3b 0d 20 20 7b 0d 20 20 | 51 55 41 44 52 49 43 20 |;. {. |QUADRIC |
|00001680| 2a 49 6e 74 65 72 73 65 | 63 74 69 6f 6e 5f 51 75 |*Interse|ction_Qu|
|00001690| 61 64 72 69 63 20 3d 20 | 28 51 55 41 44 52 49 43 |adric = |(QUADRIC|
|000016a0| 20 2a 29 20 4f 62 6a 65 | 63 74 3b 0d 20 20 56 45 | *) Obje|ct;. VE|
|000016b0| 43 54 4f 52 20 44 65 72 | 69 76 61 74 69 76 65 5f |CTOR Der|ivative_|
|000016c0| 4c 69 6e 65 61 72 3b 0d | 20 20 44 42 4c 20 4c 65 |Linear;.| DBL Le|
|000016d0| 6e 3b 0d 0d 20 20 56 53 | 63 61 6c 65 20 28 44 65 |n;.. VS|cale (De|
|000016e0| 72 69 76 61 74 69 76 65 | 5f 4c 69 6e 65 61 72 2c |rivative|_Linear,|
|000016f0| 20 49 6e 74 65 72 73 65 | 63 74 69 6f 6e 5f 51 75 | Interse|ction_Qu|
|00001700| 61 64 72 69 63 2d 3e 53 | 71 75 61 72 65 5f 54 65 |adric->S|quare_Te|
|00001710| 72 6d 73 2c 20 32 2e 30 | 29 3b 0d 20 20 56 45 76 |rms, 2.0|);. VEv|
|00001720| 61 6c 75 61 74 65 20 28 | 2a 52 65 73 75 6c 74 2c |aluate (|*Result,|
|00001730| 20 44 65 72 69 76 61 74 | 69 76 65 5f 4c 69 6e 65 | Derivat|ive_Line|
|00001740| 61 72 2c 20 2a 49 50 6f | 69 6e 74 29 3b 0d 20 20 |ar, *IPo|int);. |
|00001750| 56 41 64 64 20 28 2a 52 | 65 73 75 6c 74 2c 20 2a |VAdd (*R|esult, *|
|00001760| 52 65 73 75 6c 74 2c 20 | 49 6e 74 65 72 73 65 63 |Result, |Intersec|
|00001770| 74 69 6f 6e 5f 51 75 61 | 64 72 69 63 2d 3e 54 65 |tion_Qua|dric->Te|
|00001780| 72 6d 73 29 3b 0d 0d 20 | 20 52 65 73 75 6c 74 2d |rms);.. | Result-|
|00001790| 3e 78 20 2b 3d 20 0d 20 | 20 49 6e 74 65 72 73 65 |>x += . | Interse|
|000017a0| 63 74 69 6f 6e 5f 51 75 | 61 64 72 69 63 2d 3e 4d |ction_Qu|adric->M|
|000017b0| 69 78 65 64 5f 54 65 72 | 6d 73 2e 78 20 2a 20 49 |ixed_Ter|ms.x * I|
|000017c0| 50 6f 69 6e 74 2d 3e 79 | 20 2b 0d 20 20 49 6e 74 |Point->y| +. Int|
|000017d0| 65 72 73 65 63 74 69 6f | 6e 5f 51 75 61 64 72 69 |ersectio|n_Quadri|
|000017e0| 63 2d 3e 4d 69 78 65 64 | 5f 54 65 72 6d 73 2e 79 |c->Mixed|_Terms.y|
|000017f0| 20 2a 20 49 50 6f 69 6e | 74 2d 3e 7a 3b 0d 0d 0d | * IPoin|t->z;...|
|00001800| 20 20 52 65 73 75 6c 74 | 2d 3e 79 20 2b 3d 0d 20 | Result|->y +=. |
|00001810| 20 49 6e 74 65 72 73 65 | 63 74 69 6f 6e 5f 51 75 | Interse|ction_Qu|
|00001820| 61 64 72 69 63 2d 3e 4d | 69 78 65 64 5f 54 65 72 |adric->M|ixed_Ter|
|00001830| 6d 73 2e 78 20 2a 20 49 | 50 6f 69 6e 74 2d 3e 78 |ms.x * I|Point->x|
|00001840| 20 2b 0d 20 20 49 6e 74 | 65 72 73 65 63 74 69 6f | +. Int|ersectio|
|00001850| 6e 5f 51 75 61 64 72 69 | 63 2d 3e 4d 69 78 65 64 |n_Quadri|c->Mixed|
|00001860| 5f 54 65 72 6d 73 2e 7a | 20 2a 20 49 50 6f 69 6e |_Terms.z| * IPoin|
|00001870| 74 2d 3e 7a 3b 0d 0d 20 | 20 52 65 73 75 6c 74 2d |t->z;.. | Result-|
|00001880| 3e 7a 20 2b 3d 0d 20 20 | 49 6e 74 65 72 73 65 63 |>z +=. |Intersec|
|00001890| 74 69 6f 6e 5f 51 75 61 | 64 72 69 63 2d 3e 4d 69 |tion_Qua|dric->Mi|
|000018a0| 78 65 64 5f 54 65 72 6d | 73 2e 79 20 2a 20 49 50 |xed_Term|s.y * IP|
|000018b0| 6f 69 6e 74 2d 3e 78 20 | 2b 0d 20 20 49 6e 74 65 |oint->x |+. Inte|
|000018c0| 72 73 65 63 74 69 6f 6e | 5f 51 75 61 64 72 69 63 |rsection|_Quadric|
|000018d0| 2d 3e 4d 69 78 65 64 5f | 54 65 72 6d 73 2e 7a 20 |->Mixed_|Terms.z |
|000018e0| 2a 20 49 50 6f 69 6e 74 | 2d 3e 79 3b 0d 0d 20 20 |* IPoint|->y;.. |
|000018f0| 4c 65 6e 20 3d 20 52 65 | 73 75 6c 74 2d 3e 78 20 |Len = Re|sult->x |
|00001900| 2a 20 52 65 73 75 6c 74 | 2d 3e 78 20 2b 20 52 65 |* Result|->x + Re|
|00001910| 73 75 6c 74 2d 3e 79 20 | 2a 20 52 65 73 75 6c 74 |sult->y |* Result|
|00001920| 2d 3e 79 20 2b 20 52 65 | 73 75 6c 74 2d 3e 7a 20 |->y + Re|sult->z |
|00001930| 2a 20 52 65 73 75 6c 74 | 2d 3e 7a 3b 0d 20 20 4c |* Result|->z;. L|
|00001940| 65 6e 20 3d 20 73 71 72 | 74 28 4c 65 6e 29 3b 0d |en = sqr|t(Len);.|
|00001950| 20 20 69 66 20 28 4c 65 | 6e 20 3d 3d 20 30 2e 30 | if (Le|n == 0.0|
|00001960| 29 20 0d 20 20 20 20 7b | 0d 20 20 20 20 2f 2a 20 |) . {|. /* |
|00001970| 54 68 65 20 6e 6f 72 6d | 61 6c 20 69 73 20 6e 6f |The norm|al is no|
|00001980| 74 20 64 65 66 69 6e 65 | 64 20 61 74 20 74 68 69 |t define|d at thi|
|00001990| 73 20 70 6f 69 6e 74 20 | 6f 66 20 74 68 65 20 73 |s point |of the s|
|000019a0| 75 72 66 61 63 65 2e 20 | 20 53 65 74 20 69 74 0d |urface. | Set it.|
|000019b0| 20 20 20 20 20 20 20 20 | 20 74 6f 20 61 6e 79 20 | | to any |
|000019c0| 61 72 62 69 74 72 61 72 | 79 20 64 69 72 65 63 74 |arbitrar|y direct|
|000019d0| 69 6f 6e 2e 20 2a 2f 0d | 20 20 20 20 52 65 73 75 |ion. */.| Resu|
|000019e0| 6c 74 2d 3e 78 20 3d 20 | 31 2e 30 3b 0d 20 20 20 |lt->x = |1.0;. |
|000019f0| 20 52 65 73 75 6c 74 2d | 3e 79 20 3d 20 30 2e 30 | Result-|>y = 0.0|
|00001a00| 3b 0d 20 20 20 20 52 65 | 73 75 6c 74 2d 3e 7a 20 |;. Re|sult->z |
|00001a10| 3d 20 30 2e 30 3b 0d 20 | 20 20 20 7d 0d 20 20 65 |= 0.0;. | }. e|
|00001a20| 6c 73 65 20 0d 20 20 20 | 20 7b 0d 20 20 20 20 52 |lse . | {. R|
|00001a30| 65 73 75 6c 74 2d 3e 78 | 20 2f 3d 20 4c 65 6e 3b |esult->x| /= Len;|
|00001a40| 09 09 2f 2a 20 6e 6f 72 | 6d 61 6c 69 7a 65 20 74 |../* nor|malize t|
|00001a50| 68 65 20 6e 6f 72 6d 61 | 6c 20 2a 2f 0d 20 20 20 |he norma|l */. |
|00001a60| 20 52 65 73 75 6c 74 2d | 3e 79 20 2f 3d 20 4c 65 | Result-|>y /= Le|
|00001a70| 6e 3b 0d 20 20 20 20 52 | 65 73 75 6c 74 2d 3e 7a |n;. R|esult->z|
|00001a80| 20 2f 3d 20 4c 65 6e 3b | 0d 20 20 20 20 7d 0d 20 | /= Len;|. }. |
|00001a90| 20 7d 0d 0d 20 20 76 6f | 69 64 20 54 72 61 6e 73 | }.. vo|id Trans|
|00001aa0| 66 6f 72 6d 5f 51 75 61 | 64 72 69 63 20 28 4f 62 |form_Qua|dric (Ob|
|00001ab0| 6a 65 63 74 2c 20 54 72 | 61 6e 73 29 0d 20 20 20 |ject, Tr|ans). |
|00001ac0| 20 4f 42 4a 45 43 54 20 | 2a 4f 62 6a 65 63 74 3b | OBJECT |*Object;|
|00001ad0| 0d 54 52 41 4e 53 46 4f | 52 4d 20 2a 54 72 61 6e |.TRANSFO|RM *Tran|
|00001ae0| 73 3b 0d 20 20 7b 0d 20 | 20 51 55 41 44 52 49 43 |s;. {. | QUADRIC|
|00001af0| 20 2a 51 75 61 64 72 69 | 63 3d 28 51 55 41 44 52 | *Quadri|c=(QUADR|
|00001b00| 49 43 20 2a 29 4f 62 6a | 65 63 74 3b 0d 20 20 4d |IC *)Obj|ect;. M|
|00001b10| 41 54 52 49 58 20 51 75 | 61 64 72 69 63 5f 4d 61 |ATRIX Qu|adric_Ma|
|00001b20| 74 72 69 78 2c 20 54 72 | 61 6e 73 66 6f 72 6d 5f |trix, Tr|ansform_|
|00001b30| 54 72 61 6e 73 70 6f 73 | 65 64 3b 0d 0d 20 20 51 |Transpos|ed;.. Q|
|00001b40| 75 61 64 72 69 63 5f 54 | 6f 5f 4d 61 74 72 69 78 |uadric_T|o_Matrix|
|00001b50| 20 28 51 75 61 64 72 69 | 63 2c 20 28 4d 41 54 52 | (Quadri|c, (MATR|
|00001b60| 49 58 20 2a 29 20 26 51 | 75 61 64 72 69 63 5f 4d |IX *) &Q|uadric_M|
|00001b70| 61 74 72 69 78 5b 30 5d | 5b 30 5d 29 3b 0d 20 20 |atrix[0]|[0]);. |
|00001b80| 4d 54 69 6d 65 73 20 28 | 28 4d 41 54 52 49 58 20 |MTimes (|(MATRIX |
|00001b90| 2a 29 20 26 51 75 61 64 | 72 69 63 5f 4d 61 74 72 |*) &Quad|ric_Matr|
|00001ba0| 69 78 5b 30 5d 5b 30 5d | 2c 20 28 4d 41 54 52 49 |ix[0][0]|, (MATRI|
|00001bb0| 58 20 2a 29 20 26 28 54 | 72 61 6e 73 2d 3e 69 6e |X *) &(T|rans->in|
|00001bc0| 76 65 72 73 65 5b 30 5d | 5b 30 5d 29 2c 20 28 4d |verse[0]|[0]), (M|
|00001bd0| 41 54 52 49 58 20 2a 29 | 20 26 51 75 61 64 72 69 |ATRIX *)| &Quadri|
|00001be0| 63 5f 4d 61 74 72 69 78 | 5b 30 5d 5b 30 5d 29 3b |c_Matrix|[0][0]);|
|00001bf0| 0d 20 20 4d 54 72 61 6e | 73 70 6f 73 65 20 28 28 |. MTran|spose ((|
|00001c00| 4d 41 54 52 49 58 20 2a | 29 20 26 54 72 61 6e 73 |MATRIX *|) &Trans|
|00001c10| 66 6f 72 6d 5f 54 72 61 | 6e 73 70 6f 73 65 64 5b |form_Tra|nsposed[|
|00001c20| 30 5d 5b 30 5d 2c 20 28 | 4d 41 54 52 49 58 20 2a |0][0], (|MATRIX *|
|00001c30| 29 20 26 28 54 72 61 6e | 73 2d 3e 69 6e 76 65 72 |) &(Tran|s->inver|
|00001c40| 73 65 5b 30 5d 5b 30 5d | 29 29 3b 0d 20 20 4d 54 |se[0][0]|));. MT|
|00001c50| 69 6d 65 73 20 28 28 4d | 41 54 52 49 58 20 2a 29 |imes ((M|ATRIX *)|
|00001c60| 20 26 51 75 61 64 72 69 | 63 5f 4d 61 74 72 69 78 | &Quadri|c_Matrix|
|00001c70| 5b 30 5d 5b 30 5d 2c 20 | 28 4d 41 54 52 49 58 20 |[0][0], |(MATRIX |
|00001c80| 2a 29 20 26 51 75 61 64 | 72 69 63 5f 4d 61 74 72 |*) &Quad|ric_Matr|
|00001c90| 69 78 5b 30 5d 5b 30 5d | 2c 20 28 4d 41 54 52 49 |ix[0][0]|, (MATRI|
|00001ca0| 58 20 2a 29 20 26 54 72 | 61 6e 73 66 6f 72 6d 5f |X *) &Tr|ansform_|
|00001cb0| 54 72 61 6e 73 70 6f 73 | 65 64 5b 30 5d 5b 30 5d |Transpos|ed[0][0]|
|00001cc0| 29 3b 0d 20 20 4d 61 74 | 72 69 78 5f 54 6f 5f 51 |);. Mat|rix_To_Q|
|00001cd0| 75 61 64 72 69 63 20 28 | 28 4d 41 54 52 49 58 20 |uadric (|(MATRIX |
|00001ce0| 2a 29 20 26 51 75 61 64 | 72 69 63 5f 4d 61 74 72 |*) &Quad|ric_Matr|
|00001cf0| 69 78 5b 30 5d 5b 30 5d | 2c 20 51 75 61 64 72 69 |ix[0][0]|, Quadri|
|00001d00| 63 29 3b 0d 20 20 7d 0d | 0d 76 6f 69 64 20 51 75 |c);. }.|.void Qu|
|00001d10| 61 64 72 69 63 5f 54 6f | 5f 4d 61 74 72 69 78 20 |adric_To|_Matrix |
|00001d20| 28 51 75 61 64 72 69 63 | 2c 20 4d 61 74 72 69 78 |(Quadric|, Matrix|
|00001d30| 29 0d 51 55 41 44 52 49 | 43 20 2a 51 75 61 64 72 |).QUADRI|C *Quadr|
|00001d40| 69 63 3b 0d 4d 41 54 52 | 49 58 20 2a 4d 61 74 72 |ic;.MATR|IX *Matr|
|00001d50| 69 78 3b 0d 20 20 7b 0d | 20 20 4d 5a 65 72 6f 20 |ix;. {.| MZero |
|00001d60| 28 4d 61 74 72 69 78 29 | 3b 0d 20 20 28 2a 4d 61 |(Matrix)|;. (*Ma|
|00001d70| 74 72 69 78 29 5b 30 5d | 5b 30 5d 20 3d 20 51 75 |trix)[0]|[0] = Qu|
|00001d80| 61 64 72 69 63 2d 3e 53 | 71 75 61 72 65 5f 54 65 |adric->S|quare_Te|
|00001d90| 72 6d 73 2e 78 3b 0d 20 | 20 28 2a 4d 61 74 72 69 |rms.x;. | (*Matri|
|00001da0| 78 29 5b 31 5d 5b 31 5d | 20 3d 20 51 75 61 64 72 |x)[1][1]| = Quadr|
|00001db0| 69 63 2d 3e 53 71 75 61 | 72 65 5f 54 65 72 6d 73 |ic->Squa|re_Terms|
|00001dc0| 2e 79 3b 0d 20 20 28 2a | 4d 61 74 72 69 78 29 5b |.y;. (*|Matrix)[|
|00001dd0| 32 5d 5b 32 5d 20 3d 20 | 51 75 61 64 72 69 63 2d |2][2] = |Quadric-|
|00001de0| 3e 53 71 75 61 72 65 5f | 54 65 72 6d 73 2e 7a 3b |>Square_|Terms.z;|
|00001df0| 0d 20 20 28 2a 4d 61 74 | 72 69 78 29 5b 30 5d 5b |. (*Mat|rix)[0][|
|00001e00| 31 5d 20 3d 20 51 75 61 | 64 72 69 63 2d 3e 4d 69 |1] = Qua|dric->Mi|
|00001e10| 78 65 64 5f 54 65 72 6d | 73 2e 78 3b 0d 20 20 28 |xed_Term|s.x;. (|
|00001e20| 2a 4d 61 74 72 69 78 29 | 5b 30 5d 5b 32 5d 20 3d |*Matrix)|[0][2] =|
|00001e30| 20 51 75 61 64 72 69 63 | 2d 3e 4d 69 78 65 64 5f | Quadric|->Mixed_|
|00001e40| 54 65 72 6d 73 2e 79 3b | 0d 20 20 28 2a 4d 61 74 |Terms.y;|. (*Mat|
|00001e50| 72 69 78 29 5b 30 5d 5b | 33 5d 20 3d 20 51 75 61 |rix)[0][|3] = Qua|
|00001e60| 64 72 69 63 2d 3e 54 65 | 72 6d 73 2e 78 3b 0d 20 |dric->Te|rms.x;. |
|00001e70| 20 28 2a 4d 61 74 72 69 | 78 29 5b 31 5d 5b 32 5d | (*Matri|x)[1][2]|
|00001e80| 20 3d 20 51 75 61 64 72 | 69 63 2d 3e 4d 69 78 65 | = Quadr|ic->Mixe|
|00001e90| 64 5f 54 65 72 6d 73 2e | 7a 3b 0d 20 20 28 2a 4d |d_Terms.|z;. (*M|
|00001ea0| 61 74 72 69 78 29 5b 31 | 5d 5b 33 5d 20 3d 20 51 |atrix)[1|][3] = Q|
|00001eb0| 75 61 64 72 69 63 2d 3e | 54 65 72 6d 73 2e 79 3b |uadric->|Terms.y;|
|00001ec0| 0d 20 20 28 2a 4d 61 74 | 72 69 78 29 5b 32 5d 5b |. (*Mat|rix)[2][|
|00001ed0| 33 5d 20 3d 20 51 75 61 | 64 72 69 63 2d 3e 54 65 |3] = Qua|dric->Te|
|00001ee0| 72 6d 73 2e 7a 3b 0d 20 | 20 28 2a 4d 61 74 72 69 |rms.z;. | (*Matri|
|00001ef0| 78 29 5b 33 5d 5b 33 5d | 20 3d 20 51 75 61 64 72 |x)[3][3]| = Quadr|
|00001f00| 69 63 2d 3e 43 6f 6e 73 | 74 61 6e 74 3b 0d 20 20 |ic->Cons|tant;. |
|00001f10| 7d 0d 0d 76 6f 69 64 20 | 4d 61 74 72 69 78 5f 54 |}..void |Matrix_T|
|00001f20| 6f 5f 51 75 61 64 72 69 | 63 20 28 4d 61 74 72 69 |o_Quadri|c (Matri|
|00001f30| 78 2c 20 51 75 61 64 72 | 69 63 29 0d 4d 41 54 52 |x, Quadr|ic).MATR|
|00001f40| 49 58 20 2a 4d 61 74 72 | 69 78 3b 0d 51 55 41 44 |IX *Matr|ix;.QUAD|
|00001f50| 52 49 43 20 2a 51 75 61 | 64 72 69 63 3b 0d 20 20 |RIC *Qua|dric;. |
|00001f60| 7b 0d 20 20 51 75 61 64 | 72 69 63 2d 3e 53 71 75 |{. Quad|ric->Squ|
|00001f70| 61 72 65 5f 54 65 72 6d | 73 2e 78 20 3d 20 28 2a |are_Term|s.x = (*|
|00001f80| 4d 61 74 72 69 78 29 5b | 30 5d 5b 30 5d 3b 0d 20 |Matrix)[|0][0];. |
|00001f90| 20 51 75 61 64 72 69 63 | 2d 3e 53 71 75 61 72 65 | Quadric|->Square|
|00001fa0| 5f 54 65 72 6d 73 2e 79 | 20 3d 20 28 2a 4d 61 74 |_Terms.y| = (*Mat|
|00001fb0| 72 69 78 29 5b 31 5d 5b | 31 5d 3b 0d 20 20 51 75 |rix)[1][|1];. Qu|
|00001fc0| 61 64 72 69 63 2d 3e 53 | 71 75 61 72 65 5f 54 65 |adric->S|quare_Te|
|00001fd0| 72 6d 73 2e 7a 20 3d 20 | 28 2a 4d 61 74 72 69 78 |rms.z = |(*Matrix|
|00001fe0| 29 5b 32 5d 5b 32 5d 3b | 0d 20 20 51 75 61 64 72 |)[2][2];|. Quadr|
|00001ff0| 69 63 2d 3e 4d 69 78 65 | 64 5f 54 65 72 6d 73 2e |ic->Mixe|d_Terms.|
|00002000| 78 20 3d 20 28 2a 4d 61 | 74 72 69 78 29 5b 30 5d |x = (*Ma|trix)[0]|
|00002010| 5b 31 5d 20 2b 20 28 2a | 4d 61 74 72 69 78 29 5b |[1] + (*|Matrix)[|
|00002020| 31 5d 5b 30 5d 3b 0d 20 | 20 51 75 61 64 72 69 63 |1][0];. | Quadric|
|00002030| 2d 3e 4d 69 78 65 64 5f | 54 65 72 6d 73 2e 79 20 |->Mixed_|Terms.y |
|00002040| 3d 20 28 2a 4d 61 74 72 | 69 78 29 5b 30 5d 5b 32 |= (*Matr|ix)[0][2|
|00002050| 5d 20 2b 20 28 2a 4d 61 | 74 72 69 78 29 5b 32 5d |] + (*Ma|trix)[2]|
|00002060| 5b 30 5d 3b 0d 20 20 51 | 75 61 64 72 69 63 2d 3e |[0];. Q|uadric->|
|00002070| 54 65 72 6d 73 2e 78 20 | 3d 20 28 2a 4d 61 74 72 |Terms.x |= (*Matr|
|00002080| 69 78 29 5b 30 5d 5b 33 | 5d 20 2b 20 28 2a 4d 61 |ix)[0][3|] + (*Ma|
|00002090| 74 72 69 78 29 5b 33 5d | 5b 30 5d 3b 0d 20 20 51 |trix)[3]|[0];. Q|
|000020a0| 75 61 64 72 69 63 2d 3e | 4d 69 78 65 64 5f 54 65 |uadric->|Mixed_Te|
|000020b0| 72 6d 73 2e 7a 20 3d 20 | 28 2a 4d 61 74 72 69 78 |rms.z = |(*Matrix|
|000020c0| 29 5b 31 5d 5b 32 5d 20 | 2b 20 28 2a 4d 61 74 72 |)[1][2] |+ (*Matr|
|000020d0| 69 78 29 5b 32 5d 5b 31 | 5d 3b 0d 20 20 51 75 61 |ix)[2][1|];. Qua|
|000020e0| 64 72 69 63 2d 3e 54 65 | 72 6d 73 2e 79 20 3d 20 |dric->Te|rms.y = |
|000020f0| 28 2a 4d 61 74 72 69 78 | 29 5b 31 5d 5b 33 5d 20 |(*Matrix|)[1][3] |
|00002100| 2b 20 28 2a 4d 61 74 72 | 69 78 29 5b 33 5d 5b 31 |+ (*Matr|ix)[3][1|
|00002110| 5d 3b 0d 20 20 51 75 61 | 64 72 69 63 2d 3e 54 65 |];. Qua|dric->Te|
|00002120| 72 6d 73 2e 7a 20 3d 20 | 28 2a 4d 61 74 72 69 78 |rms.z = |(*Matrix|
|00002130| 29 5b 32 5d 5b 33 5d 20 | 2b 20 28 2a 4d 61 74 72 |)[2][3] |+ (*Matr|
|00002140| 69 78 29 5b 33 5d 5b 32 | 5d 3b 0d 20 20 51 75 61 |ix)[3][2|];. Qua|
|00002150| 64 72 69 63 2d 3e 43 6f | 6e 73 74 61 6e 74 20 3d |dric->Co|nstant =|
|00002160| 20 28 2a 4d 61 74 72 69 | 78 29 5b 33 5d 5b 33 5d | (*Matri|x)[3][3]|
|00002170| 3b 0d 20 20 7d 0d 0d 76 | 6f 69 64 20 54 72 61 6e |;. }..v|oid Tran|
|00002180| 73 6c 61 74 65 5f 51 75 | 61 64 72 69 63 20 28 4f |slate_Qu|adric (O|
|00002190| 62 6a 65 63 74 2c 20 56 | 65 63 74 6f 72 29 0d 4f |bject, V|ector).O|
|000021a0| 42 4a 45 43 54 20 2a 4f | 62 6a 65 63 74 3b 0d 56 |BJECT *O|bject;.V|
|000021b0| 45 43 54 4f 52 20 2a 56 | 65 63 74 6f 72 3b 0d 20 |ECTOR *V|ector;. |
|000021c0| 20 7b 0d 20 20 54 52 41 | 4e 53 46 4f 52 4d 20 54 | {. TRA|NSFORM T|
|000021d0| 72 61 6e 73 3b 0d 0d 20 | 20 43 6f 6d 70 75 74 65 |rans;.. | Compute|
|000021e0| 5f 54 72 61 6e 73 6c 61 | 74 69 6f 6e 5f 54 72 61 |_Transla|tion_Tra|
|000021f0| 6e 73 66 6f 72 6d 20 28 | 26 54 72 61 6e 73 2c 20 |nsform (|&Trans, |
|00002200| 56 65 63 74 6f 72 29 3b | 0d 20 20 54 72 61 6e 73 |Vector);|. Trans|
|00002210| 66 6f 72 6d 5f 51 75 61 | 64 72 69 63 20 28 4f 62 |form_Qua|dric (Ob|
|00002220| 6a 65 63 74 2c 20 26 54 | 72 61 6e 73 29 3b 0d 0d |ject, &T|rans);..|
|00002230| 20 20 7d 0d 0d 76 6f 69 | 64 20 52 6f 74 61 74 65 | }..voi|d Rotate|
|00002240| 5f 51 75 61 64 72 69 63 | 20 28 4f 62 6a 65 63 74 |_Quadric| (Object|
|00002250| 2c 20 56 65 63 74 6f 72 | 29 0d 4f 42 4a 45 43 54 |, Vector|).OBJECT|
|00002260| 20 2a 4f 62 6a 65 63 74 | 3b 0d 56 45 43 54 4f 52 | *Object|;.VECTOR|
|00002270| 20 2a 56 65 63 74 6f 72 | 3b 0d 20 20 7b 0d 20 20 | *Vector|;. {. |
|00002280| 54 52 41 4e 53 46 4f 52 | 4d 20 54 72 61 6e 73 3b |TRANSFOR|M Trans;|
|00002290| 0d 0d 20 20 43 6f 6d 70 | 75 74 65 5f 52 6f 74 61 |.. Comp|ute_Rota|
|000022a0| 74 69 6f 6e 5f 54 72 61 | 6e 73 66 6f 72 6d 20 28 |tion_Tra|nsform (|
|000022b0| 26 54 72 61 6e 73 2c 20 | 56 65 63 74 6f 72 29 3b |&Trans, |Vector);|
|000022c0| 0d 20 20 54 72 61 6e 73 | 66 6f 72 6d 5f 51 75 61 |. Trans|form_Qua|
|000022d0| 64 72 69 63 20 28 4f 62 | 6a 65 63 74 2c 20 26 54 |dric (Ob|ject, &T|
|000022e0| 72 61 6e 73 29 3b 0d 20 | 20 7d 0d 0d 76 6f 69 64 |rans);. | }..void|
|000022f0| 20 53 63 61 6c 65 5f 51 | 75 61 64 72 69 63 20 28 | Scale_Q|uadric (|
|00002300| 4f 62 6a 65 63 74 2c 20 | 56 65 63 74 6f 72 29 0d |Object, |Vector).|
|00002310| 4f 42 4a 45 43 54 20 2a | 4f 62 6a 65 63 74 3b 0d |OBJECT *|Object;.|
|00002320| 56 45 43 54 4f 52 20 2a | 56 65 63 74 6f 72 3b 0d |VECTOR *|Vector;.|
|00002330| 20 20 7b 0d 20 20 54 52 | 41 4e 53 46 4f 52 4d 20 | {. TR|ANSFORM |
|00002340| 54 72 61 6e 73 3b 0d 0d | 20 20 43 6f 6d 70 75 74 |Trans;..| Comput|
|00002350| 65 5f 53 63 61 6c 69 6e | 67 5f 54 72 61 6e 73 66 |e_Scalin|g_Transf|
|00002360| 6f 72 6d 20 28 26 54 72 | 61 6e 73 2c 20 56 65 63 |orm (&Tr|ans, Vec|
|00002370| 74 6f 72 29 3b 0d 20 20 | 54 72 61 6e 73 66 6f 72 |tor);. |Transfor|
|00002380| 6d 5f 51 75 61 64 72 69 | 63 20 28 4f 62 6a 65 63 |m_Quadri|c (Objec|
|00002390| 74 2c 20 26 54 72 61 6e | 73 29 3b 0d 20 20 7d 0d |t, &Tran|s);. }.|
|000023a0| 0d 76 6f 69 64 20 49 6e | 76 65 72 74 5f 51 75 61 |.void In|vert_Qua|
|000023b0| 64 72 69 63 20 28 4f 62 | 6a 65 63 74 29 0d 4f 42 |dric (Ob|ject).OB|
|000023c0| 4a 45 43 54 20 2a 4f 62 | 6a 65 63 74 3b 0d 20 20 |JECT *Ob|ject;. |
|000023d0| 7b 0d 20 20 51 55 41 44 | 52 49 43 20 2a 51 75 61 |{. QUAD|RIC *Qua|
|000023e0| 64 72 69 63 20 3d 20 28 | 51 55 41 44 52 49 43 20 |dric = (|QUADRIC |
|000023f0| 2a 29 20 4f 62 6a 65 63 | 74 3b 0d 0d 20 20 56 53 |*) Objec|t;.. VS|
|00002400| 63 61 6c 65 45 71 20 28 | 51 75 61 64 72 69 63 2d |caleEq (|Quadric-|
|00002410| 3e 53 71 75 61 72 65 5f | 54 65 72 6d 73 2c 20 2d |>Square_|Terms, -|
|00002420| 31 2e 30 29 3b 0d 20 20 | 56 53 63 61 6c 65 45 71 |1.0);. |VScaleEq|
|00002430| 20 28 51 75 61 64 72 69 | 63 2d 3e 4d 69 78 65 64 | (Quadri|c->Mixed|
|00002440| 5f 54 65 72 6d 73 2c 20 | 2d 31 2e 30 29 3b 0d 20 |_Terms, |-1.0);. |
|00002450| 20 56 53 63 61 6c 65 45 | 71 20 28 51 75 61 64 72 | VScaleE|q (Quadr|
|00002460| 69 63 2d 3e 54 65 72 6d | 73 2c 20 2d 31 2e 30 29 |ic->Term|s, -1.0)|
|00002470| 3b 0d 20 20 51 75 61 64 | 72 69 63 2d 3e 43 6f 6e |;. Quad|ric->Con|
|00002480| 73 74 61 6e 74 20 2a 3d | 20 2d 31 2e 30 3b 0d 20 |stant *=| -1.0;. |
|00002490| 20 7d 0d 0d 51 55 41 44 | 52 49 43 20 2a 43 72 65 | }..QUAD|RIC *Cre|
|000024a0| 61 74 65 5f 51 75 61 64 | 72 69 63 28 29 0d 20 20 |ate_Quad|ric(). |
|000024b0| 7b 0d 20 20 51 55 41 44 | 52 49 43 20 2a 4e 65 77 |{. QUAD|RIC *New|
|000024c0| 3b 0d 0d 20 20 69 66 20 | 28 28 4e 65 77 20 3d 20 |;.. if |((New = |
|000024d0| 28 51 55 41 44 52 49 43 | 20 2a 29 20 6d 61 6c 6c |(QUADRIC| *) mall|
|000024e0| 6f 63 20 28 73 69 7a 65 | 6f 66 20 28 51 55 41 44 |oc (size|of (QUAD|
|000024f0| 52 49 43 29 29 29 20 3d | 3d 20 4e 55 4c 4c 29 0d |RIC))) =|= NULL).|
|00002500| 20 20 20 20 4d 41 45 72 | 72 6f 72 20 28 22 71 75 | MAEr|ror ("qu|
|00002510| 61 64 72 69 63 22 29 3b | 0d 0d 20 20 49 4e 49 54 |adric");|.. INIT|
|00002520| 5f 4f 42 4a 45 43 54 5f | 46 49 45 4c 44 53 28 4e |_OBJECT_|FIELDS(N|
|00002530| 65 77 2c 20 51 55 41 44 | 52 49 43 5f 4f 42 4a 45 |ew, QUAD|RIC_OBJE|
|00002540| 43 54 2c 20 26 51 75 61 | 64 72 69 63 5f 4d 65 74 |CT, &Qua|dric_Met|
|00002550| 68 6f 64 73 29 0d 20 20 | 20 20 4d 61 6b 65 5f 56 |hods). | Make_V|
|00002560| 65 63 74 6f 72 20 28 26 | 28 4e 65 77 2d 3e 53 71 |ector (&|(New->Sq|
|00002570| 75 61 72 65 5f 54 65 72 | 6d 73 29 2c 20 31 2e 30 |uare_Ter|ms), 1.0|
|00002580| 2c 20 31 2e 30 2c 20 31 | 2e 30 29 3b 0d 20 20 4d |, 1.0, 1|.0);. M|
|00002590| 61 6b 65 5f 56 65 63 74 | 6f 72 20 28 26 28 4e 65 |ake_Vect|or (&(Ne|
|000025a0| 77 2d 3e 4d 69 78 65 64 | 5f 54 65 72 6d 73 29 2c |w->Mixed|_Terms),|
|000025b0| 20 30 2e 30 2c 20 30 2e | 30 2c 20 30 2e 30 29 3b | 0.0, 0.|0, 0.0);|
|000025c0| 0d 20 20 4d 61 6b 65 5f | 56 65 63 74 6f 72 20 28 |. Make_|Vector (|
|000025d0| 26 28 4e 65 77 2d 3e 54 | 65 72 6d 73 29 2c 20 30 |&(New->T|erms), 0|
|000025e0| 2e 30 2c 20 30 2e 30 2c | 20 30 2e 30 29 3b 0d 20 |.0, 0.0,| 0.0);. |
|000025f0| 20 4e 65 77 2d 3e 43 6f | 6e 73 74 61 6e 74 20 3d | New->Co|nstant =|
|00002600| 20 31 2e 30 3b 0d 20 20 | 4e 65 77 2d 3e 43 4d 5f | 1.0;. |New->CM_|
|00002610| 43 6f 6e 73 74 61 6e 74 | 20 3d 20 48 55 47 45 5f |Constant| = HUGE_|
|00002620| 56 41 4c 3b 0d 20 20 4e | 65 77 2d 3e 43 6f 6e 73 |VAL;. N|ew->Cons|
|00002630| 74 61 6e 74 5f 43 61 63 | 68 65 64 20 3d 20 46 41 |tant_Cac|hed = FA|
|00002640| 4c 53 45 3b 0d 20 20 4e | 65 77 2d 3e 4e 6f 6e 5f |LSE;. N|ew->Non_|
|00002650| 5a 65 72 6f 5f 53 71 75 | 61 72 65 5f 54 65 72 6d |Zero_Squ|are_Term|
|00002660| 20 3d 20 46 41 4c 53 45 | 3b 0d 20 20 72 65 74 75 | = FALSE|;. retu|
|00002670| 72 6e 20 28 4e 65 77 29 | 3b 0d 20 20 7d 0d 0d 76 |rn (New)|;. }..v|
|00002680| 6f 69 64 20 2a 43 6f 70 | 79 5f 51 75 61 64 72 69 |oid *Cop|y_Quadri|
|00002690| 63 20 28 4f 62 6a 65 63 | 74 29 0d 4f 42 4a 45 43 |c (Objec|t).OBJEC|
|000026a0| 54 20 2a 4f 62 6a 65 63 | 74 3b 0d 20 20 7b 0d 20 |T *Objec|t;. {. |
|000026b0| 20 51 55 41 44 52 49 43 | 20 2a 4e 65 77 3b 0d 0d | QUADRIC| *New;..|
|000026c0| 20 20 4e 65 77 20 3d 20 | 43 72 65 61 74 65 5f 51 | New = |Create_Q|
|000026d0| 75 61 64 72 69 63 20 28 | 29 3b 0d 20 20 2a 4e 65 |uadric (|);. *Ne|
|000026e0| 77 20 3d 20 2a 28 28 51 | 55 41 44 52 49 43 20 2a |w = *((Q|UADRIC *|
|000026f0| 29 20 4f 62 6a 65 63 74 | 29 3b 0d 0d 20 20 72 65 |) Object|);.. re|
|00002700| 74 75 72 6e 20 28 4e 65 | 77 29 3b 0d 20 20 7d 0d |turn (Ne|w);. }.|
|00002710| 0d 76 6f 69 64 20 44 65 | 73 74 72 6f 79 5f 51 75 |.void De|stroy_Qu|
|00002720| 61 64 72 69 63 20 28 4f | 62 6a 65 63 74 29 0d 4f |adric (O|bject).O|
|00002730| 42 4a 45 43 54 20 2a 4f | 62 6a 65 63 74 3b 0d 20 |BJECT *O|bject;. |
|00002740| 20 7b 0d 20 20 66 72 65 | 65 20 28 4f 62 6a 65 63 | {. fre|e (Objec|
|00002750| 74 29 3b 0d 20 20 7d 0d | 00 00 00 00 00 00 00 00 |t);. }.|........|
|00002760| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002770| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002780| 00 00 01 00 00 00 01 6e | 00 00 00 6e 00 00 00 3e |.......n|...n...>|
|00002790| 4c 4c 3b 0d 09 09 67 46 | 72 65 65 4c 69 73 74 43 |LL;...gF|reeListC|
|000027a0| 6f 75 6e 74 20 3d 20 30 | 3b 0d 09 09 67 45 73 63 |ount = 0|;...gEsc|
|000027b0| 0a 51 55 41 44 52 49 43 | 53 2e 43 00 02 00 00 00 |.QUADRIC|S.C.....|
|000027c0| 54 45 58 54 4d 50 53 20 | 01 08 ff ff ff ff 00 00 |TEXTMPS |........|
|000027d0| 00 00 54 45 58 54 4d 50 | 53 20 01 08 ff ff ff ff |..TEXTMP|S ......|
|000027e0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000027f0| 00 00 a8 7d b4 a8 00 00 | 26 d8 00 00 01 ac 29 20 |...}....|&.....) |
|00002800| 6b 6e 6f 77 20 77 65 27 | 72 65 20 6f 75 74 20 6f |know we'|re out o|
|00002810| 66 20 72 65 63 6c 61 69 | 6d 69 6e 67 20 6d 6f 64 |f reclai|ming mod|
|00002820| 65 0d 09 67 52 65 63 6c | 61 69 6d 69 6e 67 20 3d |e..gRecl|aiming =|
|00002830| 20 66 61 6c 73 65 3b 0d | 0d 7d 20 2f 2f 20 50 4f | false;.|.} // PO|
|00002840| 56 5f 72 65 63 6c 61 69 | 6d 0d 75 4e 56 ff f8 48 |V_reclai|m.uNV..H|
|00002850| e7 03 08 28 6e 00 08 48 | 6e 00 0c 2f 3c 00 04 00 |...(n..H|n../<...|
|00002860| 04 a8 a9 4a 6e 00 14 67 | 0a 70 0e d0 78 0b aa d1 |...Jn..g|.p..x...|
|00002870| 6e 00 0c 4a 6e 00 16 67 | 18 42 27 2f 0c 48 6e 00 |n..Jn..g|.B'/.Hn.|
|00002880| 00 00 00 48 00 09 4d 6f | 6e 61 63 6f 00 2a 2a 2a |...H..Mo|naco.***|
|00002890| 2a 2a 2a 2a 2a 2a 2a 2a | 2a 2a 2a 2a 2a 2a 2a 2a |********|********|
|000028a0| 2a 0d 2a 20 20 20 00 06 | 00 04 00 3c 00 24 01 dd |*.* ..|...<.$..|
|000028b0| 02 3d 00 3c 00 24 01 dd | 02 3d a8 7d b4 a8 00 00 |.=.<.$..|.=.}....|
|000028c0| 00 00 00 00 00 00 00 00 | 00 00 01 00 00 00 00 1e |........|........|
|000028d0| 00 3c 00 24 01 dd 02 3d | 00 3c 00 24 01 dd 02 3d |.<.$...=|.<.$...=|
|000028e0| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|000028f0| 01 00 00 00 01 6e 00 00 | 00 6e 00 00 00 3e 00 8d |.....n..|.n...>..|
|00002900| 3b f8 18 3e 00 00 00 1c | 00 3e 00 00 4d 50 53 52 |;..>....|.>..MPSR|
|00002910| 00 01 00 0a 03 ed ff ff | 00 00 00 00 00 00 00 00 |........|........|
|00002920| 03 f0 ff ff 00 00 00 4c | 00 8f 98 3c 00 00 00 00 |.......L|...<....|
|00002930| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002940| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002950| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002960| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00002970| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
+--------+-------------------------+-------------------------+--------+--------+